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ABSTRACT
To accurately predict fracture patterns in quasi-brittle ma-

terials, it is necessary to accurately characterize heterogeneity
in the properties of a material microstructure. This heterogene-
ity influences crack propagation at weaker points. Also, inherent
randomness in localized material properties creates variability
in crack propagation in a population of nominally identical mate-
rial samples. In order to account for heterogeneity in the strength
properties of a material at a small scale (or “microscale”), a
mesoscale model is developed at an intermediate scale, smaller
than the size of the overall structure. A central challenge of char-
acterizing material behavior at a scale below the representative
volume element (RVE), is that the stress/strain relationship is
dependent upon boundary conditions imposed. To mitigate er-
ror associated with boundary condition effects, statistical vol-
ume elements (SVE) are characterized using a Voronoi tessella-
tion based partitioning method. A moving window approach is
used in which partitioned Voronoi SVE are analysed using finite
element analysis (FEA) to determine a limiting stress criterion
for each window. Results are obtained for hydrostatic, pure and
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simple shear uniform strain conditions. A method is developed
to use superposition of results obtained to approximate SVE be-
havior under other loading conditions. These results are used
to determine a set of strength parameters for mesoscale material
property fields. These random fields are then used as a basis for
input in to a fracture model to predict fracture patterns in quasi-
brittle materials.

INTRODUCTION
Material inhomogeneities at the microstructural scale

greatly influence fracture response. Failure initiates locally
where stress concentrations are induced in large part by local
heterogeneity. Therefore, fracture models that ignore microstruc-
tural inhomogeneity, or employ Representative Volume Elements
(RVE) to homogenize material properties, may not accurately
capture fracture response. The high sensitivity of brittle frac-
ture to material microstructure not only contributes to the form
of failure patterns, but also size effects [1–3] and high response
variability for samples with identical geometry and loading spec-
ifications [4–6].

In previous work, the Spacetime Discontinuous Galerkin
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(SDG) Finite Element Method (FEM) [7] has been employed for
the solution of elastodynamic problems. The SDG method has
high accuracy from the direct discretization of space and time,
and is also efficient in characterizing the local solution proper-
ties critical for simulation of fracture in quasi-brittle materials by
using adaptive operations in spacetime that control discretization
errors [8] and track propagating cracks [9].

In this work, a mesoscale modeling technique will be used
to characterize mesoscale material property behavior; the model
outputs can be used in SDG fracture simulation. The mesoscale
model characterizes behavior of Statistical Volume Elements
(SVE) that are below the scale of the RVE. These elements re-
tain a degree of local descriptiveness, which is missing in an
RVE-based analysis. Previous work has focused on the use of
mesoscale modeling techniques to model composite material be-
havior [10–15]. A main advantage of the approach is that it can
ultimately be used to create random field representations of local
composite properties. This type of mesoscale material character-
ization can be used as a basis for stochastic simulation, or as a
statistical basis for models predicting damage and failure, which
is the focus of the current work.

MESOSCALE MATERIAL MODELING
A Voronoi tessellation based partitioning scheme is used to

model the SVE, in place of a more commonly used square parti-
tioning approach. Voronoi tessellations have been shown to pro-
vide closer approximations of material properties because stress
concentrations are reduced when inclusions are not allowed to
intersect inclusion boundaries [16]. The collection of SVE that
partition an RVE are tested using Finite Element Analysis (FEA)
to determine material behavior under hydrostatic, pure and sim-
ple shear displacement based loading. An SVE failure criterion
is defined and superposition is used to determine the approximate
failure stress of the SVE when loaded in any direction.

CONSTRUCTION AND LOADING OF SVE
An RVE with randomly placed inclusions is initially par-

titioned into Voronoi cells using Delaunay triangulation based
on center points of inclusions. The cells are grouped into simi-
larly sized SVE by calculating the location of each Voronoi cell
centroid with respect to a square grid imposed on the RVE. If
a Voronoi cell centroid lies within a given square grid area, the
cell is assigned to that SVE grouping. For small sizes of SVE,
there may be regions in which no Voronoi cell centroid lies, lim-
iting the number of SVE that may be generated. In this work, the
RVE is generated with a volume fraction of approximately 10%
inclusions; each inclusion diameter has a unit value, the RVE has
equal side lengths 100 times the size of the inclusion. Results
are given for a material with inclusion to matrix contrast ratio
100 : 1.

Figure 1 shows a typical SVE, with grid spacing set to 5
times the inclusion diameter, under the three load cases consid-
ered in this work. Displacement conditions on the boundary uuu|∂Ω

are given by:

uuu|∂Ω = E · xxx→ 〈ε〉Ω = E (1)

where hydrostatic, pure shear, and simple shear loading condi-
tions are generated using the three values of E shown below, re-
spectively.

E =eH ·
[

1 0
0 1

]
,

eP ·
[

1 0
0 −1

]
,

eS ·
[

0 1
1 0

] (2)

Scale factors eH ,eP and eS correspond to each of the three cases.
Using a superposition approach, any displacement boundary con-
dition can be obtained by linear combination of these three load
cases for a planar problem. A stiffness matrix is generated based
on the results of these three loading conditions, such that dis-
placement boundary conditions can be related to average nodal
stresses on the boundary of the SVE.

FAILURE CRITERION
The mesoscale approach is fully elastic, with failure as-

sumed when a threshold value of stress occurs in the matrix. In
particular, stresses are calculated at the matrix/inclusion inter-
face, within the matrix material only, in the direction normal to
the inclusion boundary. The “path” function in the finite element
program ABAQUS is used to determine the stresses in the matrix
surrounding the inclusion, as shown in Fig. 2.

A uniaxial tensile, or simple shear loading direction may
be assumed. By superposition, the stress at a position xxx on the
boundary of any inclusion, in the direction normal to the inclu-
sion as shown in Fig. 3, is given by:

σN(xxx) = eH
σ

H
N (xxx)+ eP

σ
P
N(xxx)+ eS

σ
S
N(xxx) (3)

where each of the three load cases (hydrostatic, pure shear and
simple shear) are denoted by superscripts (H, P and S, respec-
tively).

Using the stiffness matrix developed as described in the pre-
vious section, scale factors eH ,eP and eS are determined such
that superposition of H, P, and S strain loadings generate far field
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FIGURE 1. LOADING OF VORONOI TESSELATION BASED
SVE BY (A) HYDROSTATIC (B) PURE SHEAR AND (C) SIMPLE
SHEAR DISPLACEMENT BOUNDARY CONDITIONS

(SVE averaged) stress loading Σnn,Σnt ,Σtt , cf. Fig. 3. The unit
magnitude normal and tangential stress loading at an angle θ are
realized by having the only nonzero stress components of Σnn = 1
and Σnt = 1, for normal and shear modes respectively.

Macroscopic failure threshold of SVE is associated with far
field stress loadings that makes the maximum of interfacial stress
over all points, maxxxx(σN(xxx), equal to a predetermined debonding
threshold σT H . Accordingly, normal s̃n(θ) and tangential s̃t(θ)
strengths for far field loadings at angle θ are equal to load factors
s,

s =
σT H

maxxxx(σN(xxx))
(4)

that scale unit magnitude normal and tangential far field
loadings and cause matrix stress at the inclusion boundary, nor-
mal to the inclusion, to reach the threshold value σT H . While

FIGURE 2. CIRCULAR PATH AROUND THE INCLUSION, LO-
CATION WHERE MATRIX MATERIAL STRESSES ARE DETER-
MINED

FIGURE 3. SCHEMATIC OF AN SVE AND THE n, t AXES FOR
FAR-FIELD LOADING RELATIVE TO GLOBAL X ,Y AXES.

s̃n(θ) and s̃t(θ) correspond to stress values, at angle θ , for which
the SVE response starts to significantly deviate from linear elas-
ticity they are very close to the ultimate stress, i.e., strength, of
the SVE for quasi-brittle materials. The proximity of linear elas-
ticity stress limit and strength is demonstrated in various works,
see for example [3, 17], and is due to the lack of significant bulk
energy dissipative mechanisms for quasi-brittle materials.

RESULTS
Results given in Fig. 4 and 5 show the strength of a given

SVE as a function of the angle of the applied load for uniax-
ial tensile load s̃n and simple shear load s̃t , respectively, where
a threshold value of failure in the matrix is normalized to a
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unit value. These results show the SVE reaching failure signif-
icantly below this threshold value, for most loading directions,
because of the effects of stress concentrations around the inclu-
sion boundaries. Results are given in Fig. 4 and 5 for a single
SVE, with dimensions approximately 5 times the inclusion di-
ameter, taken from a set of approximately 400 SVE that partition
an RVE with side length approximately 100 times the inclusion
diameter.

FIGURE 4. TENSILE STRENGTH OF AN SVE AS A FUNCTION
OF BOUNDARY CONDITION LOADING DIRECTION θ .

FIGURE 5. SHEAR STRENGTH OF AN SVE AS A FUNCTION
OF BOUNDARY CONDITION LOADING DIRECTION θ .

To visualize the variability among the population of SVE
that partition the RVE, Fig. 6 shows the minimum strength value
under tensile loading at any load angle for a set of approximately
400 SVE. Based on this data, the probability density function
(PDF) in Fig. 7 is generated.

FIGURE 6. MINIMUM STRENGTH VALUE AT ANY LOADING
DIRECTION FOR A SET OF SVE.

FIGURE 7. PDF OF MINIMUM STRENGTH VALUE BASED ON
SVE DATA SET.

Another way to approach the data is to determine the mean
value of strength of a given SVE under loadings at all angles
(e.g., averaging the results shown in Fig. 4). Calculating the
average value of tensile strength for the set of all SVE produces
the PDF shown in Fig. 8.

Finally, the maximum value of strength of a given SVE un-
der loading at all angles may be calculated; the PDF showing
these results for tensile strength is given in Fig. 9.

The PDF of minimum values of s̃n from Fig. 7 and the spa-
tial covariance function, computed by the moving window ap-
proach [18], are used in the Karhunen-Loève (KL) method [19]
to generate random field realizations for s̃n. The random field re-
alization shown in Fig. 10, normalized by σT H , is subsequently
used for the fracture analysis of the domain under a spatially
uniform (before any crack generation) and temporally increasing
stress field. Figure 11 shows the final fracture pattern, where as
expected fractures have mostly occurred in low failure strength
regions. The details of generation of random field for σ̃n by the
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FIGURE 8. PDF OF MEAN STRENGTH VALUE BASED ON SVE
DATA SET.

FIGURE 9. PDF OF MAXIMUM STRENGTH VALUE BASED ON
SVE DATA SET.

KL method and the SDG method used for the fracture simulation
can be found in [9, 20].

CONCLUSIONS
Based on this work, a method to capture variability in mi-

crostructural material strength has been demonstrated . This
characterization includes minimum, mean and maximum values
of strength as a function of the angle of loading of a given SVE.
It is then possible to generate PDFs of the minimum, mean, and
maximum strength values of the population of SVE that parti-
tion an RVE. The use of a Voronoi tessellation based partitioning
method increases the accuracy of the predicted SVE response by
eliminating spurious stress concentrations that arise when inclu-
sions intersect RVE boundaries. The use of a superposition ap-
proach when loading each individual SVE allows for determina-
tion of SVE behavior at any loading angle based on combination
of a set of hydrostatic, pure and simple shear loading conditions.

This work provides a method for generating realistic

FIGURE 10. A REALIZATION OF RANDOM FIELD FOR s̃n US-
ING THE KARHUNEN-LOÈVE METHOD.

FIGURE 11. FRACTURE SIMULATION OF A DOMAIN WITH
NONUNIFORM s̃n BY THE SDG METHOD.

stochastic fields and as shown it can be used as a basis for fracture
modeling. It is critical to accurately model material heterogene-
ity at the mesoscale to identify the influence of weaker points in
the initiation and propagation of cracking. Future work will in-
vestigate the influence of microstructure on statistical properties
of fracture strength and subsequently their effect on macroscopic
fracture patterns.
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